Exercise 31

Find the derivative of the function using the definition of derivative. State the domain of the function and the domain of its derivative.

$$
f(x)=x^{4}
$$

Solution

Calculate the derivative of $f(x)$ using the definition.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{4}-x^{4}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(x^{4}+4 x^{3} h+6 x^{2} h^{2}+4 x h^{3}+h^{4}\right)-x^{4}}{h} \\
& =\lim _{h \rightarrow 0} \frac{4 x^{3} h+6 x^{2} h^{2}+4 x h^{3}+h^{4}}{h} \\
& =\lim _{h \rightarrow 0}\left(4 x^{3}+6 x^{2} h+4 x h^{2}+h^{3}\right) \\
& =4 x^{3}
\end{aligned}
$$

The domain of $f(x)$ is $\{x \mid-\infty<x<\infty\}$, and the domain of $f^{\prime}(x)$ is $\{x \mid-\infty<x<\infty\}$. $f(x)$ and $f^{\prime}(x)$ are polynomials, so any number can be plugged into them.

